Effect of Kurtosis-type of **Primordial Non-Gaussianity on** Halo Mass Function arXiv:1103.2586 Nagoya University/IPMU, U. Tokyo Naoshi Sugiyama with Shuichiro Yokoyama, Joe Silk, Saleem Zaroubi

Utilize (1)void abundance (2)early star formation (3)most massive object at high z, as a probe of "non-skewed" non-Gaussianity

Kurtosis type non-Gaussianity Kurtosis: 4th order, non-Skewed $\zeta = \zeta_{\rm G} + \frac{3}{5} f_{\rm NL} \left(\zeta_{\rm G}^2 - \langle \zeta_{\rm G}^2 \rangle \right) + \frac{9}{25} g_{\rm NL} \zeta_{\rm G}^3$

Trispectrum can be written as:

 $\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\zeta(\mathbf{k}_4)\rangle = (2\pi)^3 T_{\zeta}(k_1,k_2,k_3,k_4)\delta^{(3)}(\mathbf{k}_1+\mathbf{k}_2+\mathbf{k}_3+\mathbf{k}_4) ,$

 $T_{\zeta}(k_1, k_2, k_3, k_4) = \tau_{\rm NL}(P_{\zeta}(k_1)P_{\zeta}(k_2)P_{\zeta}(k_{13}) + 11 \text{ perms.}) + \frac{54}{25}g_{\rm NL}(P_{\zeta}(k_1)P_{\zeta}(k_2)P_{\zeta}(k_3) + 3 \text{ perms.})$

 $\tau_{\rm NL} = \frac{36}{25} f_{\rm NL}^2$ This is true, only when primordial fluctuations are generated from a single scalar field.

For multi-field inflation, τ_{NL} is a parameter but with constraint:

 $\tau_{\rm NL} \ge \frac{36}{25} f_{\rm NL}^2$ Unlike $g_{\rm NL} \tau_{\rm NL}$ has a lower bound. Set a constraint on multi-field inflation.

T. Suyama and M. Yamaguchi 2008

Kurtosis type non-Gaussianity Kurtosis: 4th order, non-Skewed $\zeta = \zeta_{\rm G} + \frac{3}{5} f_{\rm NL} \left(\zeta_{\rm G}^2 - \langle \zeta_{\rm G}^2 \rangle \right) + \frac{9}{25} g_{\rm NI} \zeta_{\rm G}^3$

Trispectrum can be written as:

 $\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\zeta(\mathbf{k}_4)\rangle = (2\pi)^3 T_{\zeta}(k_1,k_2,k_3,k_4)\delta^{(3)}(\mathbf{k}_1+\mathbf{k}_2+\mathbf{k}_3+\mathbf{k}_4) ,$

 $T_{\zeta}(k_1, k_2, k_3, k_4) = \tau_{\rm NL}(P_{\zeta}(k_1)P_{\zeta}(k_2)P_{\zeta}(k_{13}) + 11 \text{ perms.}) + \frac{54}{25}g_{\rm NL}(P_{\zeta}(k_1)P_{\zeta}(k_2)P_{\zeta}(k_3) + 3 \text{ perms.})$

 $\tau_{\rm NL} = \frac{36}{25} f_{\rm NL}^2$ This is true, only when primordial fluctuations are generated from a single scalar field.

For multi-field inflation, τ_{NL} is a parameter but with constraint:

$$\tau_{\rm NL} \geqslant \frac{36}{25} f_{\rm NL}^2 / 2$$

Eiichiro's Talk

T. Suyama and M. Yamaguchi 2008

Probability Distribution Func.

Probability Distribution Func.

Take the ratio with Gaussian case

Huge Difference in the tails Distinguishable?

Limits from WMAP

 $-10 < f_{\rm NL} < 74 (95\% CL)$ $-7.4 \times 10^{5} < g_{\rm NL} < 8.2 \times 10^{5}$ $-0.6 \times 10^{4} < \tau_{\rm NL} < 3.3 \times 10^{4}$ Komatsu et al. 2010

Smidt, Amblard, Byrnes, Cooray, Heavens, Munshi 2010

Here, in order to see the effect in the clear manner, we take $\tau_{\rm NL} = 10^6$

Non-Gaussian Mass Function
• Mass Function: Number of Collapsed Objects
• Mass Function: Number of Collapsed Objects
• Probability Density Function (PDF) is needed

$$\delta_{R} = \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} W_{R}(k) \delta(\mathbf{k}, z)$$

$$W_{R}(k) = 3 \left(\frac{\sin(kR)}{k^{3}R^{3}} - \frac{\cos(kR)}{k^{2}R^{2}} \right)$$

$$W_{R}(k) = 3 \left(\frac{\sin(kR)}{k^{3}R^{3}} - \frac{\cos(kR)}{k^{3}R^{3}} \right)$$

$$W_{R}(k) = 3 \left(\frac{\sin(kR)}{k^{3}R^{3}} - \frac{\cos(kR)}{k^{3}R^{3}} \right)$$

$$W_{R}(k) = 3 \left(\frac{\sin(kR)}{k^{3}R^{3}} - \frac{\sin(kR)}{k^{3}R^{3}} \right)$$

<

Probability Distribution Func.

Edgeworth expansion

г

Juszkiewicz et al.95, LoVerde et al.08

$$F(\nu)d\nu = d\nu \left[c_0 F_G(\nu) + \sum_{m=1}^{\infty} \frac{c_m}{m!} (-1)^m H_m(\nu) F_G(\nu) \right]$$

$$F_G(\nu) \equiv (2\pi)^{-1/2} \exp(-\nu^2/2)$$

Coefficients can be evaluated:

$$c_0 = 1$$
, $c_1 = c_2 = 0$, $c_3 = -S_3(R)\sigma_R$, $c_4 = S_4(R)\sigma_R^2$

$$c_5 = -S_5(R)\sigma_R^3$$
, $c_6 = 10S_3(R)^2\sigma_R^2 + S_6(R)\sigma_R^4$, \cdots ,

Non-Gaussian PDF can be obtained:

$$F(\nu)d\nu = \frac{d\nu}{\sqrt{2\pi}} \exp\left(-\nu^2/2\right) \left[1 + \frac{S_3(R)\sigma_R}{6} H_3(\nu) + \frac{1}{2} \left(\frac{S_3(R)\sigma_R}{6}\right)^2 H_6(\nu) + \frac{1}{6} \left(\frac{S_3(R)\sigma_R}{6}\right)^3 H_9(\nu) + \frac{S_4(R)\sigma_R^2}{24} H_4(\nu) + \frac{1}{2} \left(\frac{S_4(R)\sigma_R^2}{24}\right)^2 H_8(\nu) + \frac{1}{6} \left(\frac{S_4(R)\sigma_R^2}{24}\right)^3 H_{12}(\nu) + \cdots \right],$$

D'Amico et al. 2010 Halo Mass Function

$$\frac{dn}{dM}(M,z)dM = -dM\frac{2\bar{\rho}}{M}\frac{d}{dM}\int_{\delta_c/\sigma_R}^{\infty}d\nu F(\nu) \\
= -dM\sqrt{\frac{2}{\pi}}\frac{\bar{\rho}}{M}\exp\left[-\frac{\nu_c^2}{2}\right]\left\{\frac{d\ln\sigma_R}{dM}\nu_c\left[1\right] \\
+\frac{S_3(R)\sigma_R}{6}H_3(\nu_c) + \frac{1}{2}\left(\frac{S_3(R)\sigma_R}{6}\right)^2H_6(\nu_c) + \frac{1}{6}\left(\frac{S_3(R)\sigma_R}{6}\right)^3H_9(\nu_c) \\
+\frac{S_4(R)\sigma_R^2}{24}H_4(\nu_c) + \frac{1}{2}\left(\frac{S_4(R)\sigma_R^2}{24}\right)^2H_8(\nu_c) + \frac{1}{6}\left(\frac{S_4(R)\sigma_R^2}{24}\right)^3H_{12}(\nu_c)\right] \\
+\frac{d}{dM}\left(\frac{S_3(R)\sigma_R}{6}\right)H_2(\nu_c) + \frac{1}{2}\frac{d}{dM}\left(\frac{S_3(R)\sigma_R}{6}\right)^2H_5(\nu_c) + \frac{1}{6}\frac{d}{dM}\left(\frac{S_3(R)\sigma_R}{6}\right)^3H_8(\nu_c) \\
+\frac{d}{dM}\left(\frac{S_4(R)\sigma_R^2}{24}\right)H_3(\nu_c) + \frac{1}{2}\frac{d}{dM}\left(\frac{S_4(R)\sigma_R^2}{24}\right)^2H_7(\nu_c) + \frac{1}{6}\frac{d}{dM}\left(\frac{S_4(R)\sigma_R^2}{24}\right)^3H_{11}(\nu_c)\right\} +$$

Ratio to Gaussian Mass Function

 $R_{\rm NG}(M,z) \equiv \frac{dn(M,z)/dM}{dn_{\rm G}(M,z)/dM}$

$$\frac{dn_{\rm G}}{dM}(M,z)dM = -\sqrt{\frac{2}{\pi}}\frac{\bar{\rho}}{M}\exp\left[-\frac{\nu_c^2}{2}\right]\frac{d\ln\sigma_R}{dM}\nu_c dM$$

Fitting: Skewness & Kurtosis

In the squeezed limit (local type)

Skewness

$$\sigma_R S_3(R) = 4.3 \times 10^{-4} f_{\rm NL} \times \sigma_R^{0.13} \ (10^{12} h^{-1} M_{\odot} < M < 2 \times 10^{15} h^{-1} M_{\odot})$$

De Simone, Maggiore & Riotto 2010; Enqvist, Hotchkiss & Taanila 2010

from $g_{\rm NI}$

$$\sigma_R^2 S_4^g(R) = 9.4 \times 10^{-8} g_{\rm NL} \times \sigma_R^{0.27} \ (10^{12} h^{-1} M_{\odot} < M < 2 \times 10^{15} h^{-1} M_{\odot})$$

Chongchitnan & Silk 2010a; Enqvist, Hotchkiss & Taanila 2010

from $\tau_{\rm NL}$

 $\sigma_R^2 S_4^\tau(R) = 1.9 \times 10^{-7} \tau_{\rm NL} \times \sigma_R^{0.25} \ (10^{12} h^{-1} M_{\odot} < M < 2 \times 10^{15} h^{-1} M_{\odot})$

Mass Function

Mass Function (ratio to Gauss)

Application 1: Early Star Formation

A simple analytic model global star formation density Somerville, et al. 2003

$$\dot{\rho}_* = e_* \rho_b \frac{d}{dt} F_h(M_{\rm vir} > M > M_{\rm crit}, t)$$

e_{*}: star formation efficiency: 0.001 - 0.002 M_{crit} : minimum collapsed mass: $10^{6}h^{-1}M_{SUN}$ M_{vir} : virial mass $T_{vir}=10^{4}K$ F_{b} : fraction of the total mass in collapsed objects

$$F_h(M_{\rm vir} > M > M_{\rm crit}, z) = \frac{1}{\bar{\rho}} \int_{M_{\rm crit}}^{M_{\rm vir}} M \frac{dn}{dM} (M, z) dM \, \bigtriangledown \, \mathbb{N}G$$

$$\frac{dn_{\gamma}}{dt}(t) = e_* \rho_b N_{\gamma} \left(F_h(t) - F_h(t - \tau_{\rm III}) \right)$$

 N_{γ} : # of photons/s/ M_{SUN} τ_{III} : life time of PopIII star

Application 1: Early Star Formation

Cumulative # of ionizing photons/baryons

$$\frac{n_{\gamma}}{n_H}(z) \simeq \mu m_p e_* N_{\gamma} F_h(M_{\rm vir} > M > M_{\rm crit}, z) \tau_{\rm III}$$

00

Good measure of reionization of inter galactic medium Apprrox. $n_{\gamma}/n_{\rm H} = 10$ is the epoch of reionization

Time evolution of Cumulative number of ionizing photons

Time evolution of Cumulative number of ionizing photons Non-Gaussian vs Gaussian

Application 1: Early Star Formation

- Non-Gaussianity doesn't affect much about global reionization history
- For the first star formation, however, non-Gaussisan, especially Kurtosis type one enhances reionization a lot!

Application 2. High-Redshift Massive Clusters

XMMU J2235.3-2557

at z=1.4, M=(6.4 ± 1.2)×10¹⁴M_{SUN}

• Cayon et al. found to explain this, f_{NL} =449 is needed

Ruled out by WMAP constraints

This f_{NL} corresponds to τ_{NL} =1.7×10⁶ to obtain same R_{NG}

Application 3. Void Abundance

Press Schechter

Kamionkowski, Verde, Jimenez 2009

$$\frac{dn^{\rm void}(R)}{dR}dR = -dR \times \frac{6}{4\pi R^3} \frac{d}{dR} \int_{-\infty}^{\delta_v/\sigma_R} F(\nu) d\nu$$

$$\frac{dn_{\rm G}^{\rm void}(R)}{dR} = \sqrt{\frac{2}{\pi}} \frac{3}{4\pi R^4} \exp\left[-\frac{\delta_v^2}{2\sigma_R^2}\right] \frac{\delta_v}{\sigma_R} \frac{d\ln\sigma_R}{d\ln R}$$

Non-Gaussian

$$\frac{dn^{\text{void}}(R)}{dR} = \sqrt{\frac{2}{\pi}} \frac{3}{4\pi R^4} \exp\left[-\frac{\delta_v^2}{2\sigma_R^2}\right] \left\{ \frac{d\ln\sigma_R}{d\ln R} \frac{\delta_v}{\sigma_R} \left[1 + \frac{S_3(R)\sigma_R}{6} H_3(\delta_v/\sigma_R) + \frac{S_4(R)\sigma_R^2}{24} H_4(\delta_v/\sigma_R)\right] + \frac{d}{d\ln R} \left(\frac{S_3(R)\sigma_R}{6}\right) H_2(\delta_v/\sigma_R) + \frac{d}{d\ln R} \left(\frac{S_4(R)\sigma_R^2}{24}\right) H_3(\delta_v/\sigma_R)\right] \right\}$$

Void Abundance as a function of the size of void, R Ratio between non-Gaussian and Gaussian cases

Application 3. Void Abundance

Since it reflects the negative tail of the distribution function, τ_{NL} and f_{NL} work opposite directions

Positive \u03c0_{NL} increases void abundance
 Positive f_{NL} decreases void abundance

Combining Void abundance with other observations, e.g., massive cluster, early star formation, we can make a distinction between skewed and non-skewed non-Gaussian distribution

Summary

- We study the effect of the Kurtosis type primordial non-Gaussianity on structure formation.
 - obtain a formula of the halo mass function with primordial non-Gaussianities, including $f_{\rm NL}, g_{\rm NL}, \tau_{\rm NL}$
 - find the enhancement of the formation of the massive and high redshift objects, especially high density peak object for the Kurtosis type.
 - early phase of reionization of the Universe
 - massive clusters at high redshift
 - abundance of voids

potential to distinguish skewness & kurtosis types

Another application of the mass function

Ionized bubble number count as a probe of non-Gaussianity

Hiroyuki Tashiro¹, and Naoshi Sugiyama^{2,3,4} ¹Center for Particle Physics and Phenomenology (CP3), Université catholique de Louvain, Chemin du Cyclotron, 2, B-1348 Louvain-la-Neuve, Belgium ²Department of Physics and Astrophysics, Nagoya University, Chikusa, Nagoya 464-8602, Japan ³Institute for Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba, 277-8582, Japan ⁴Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, I

arXiv:1104.0139

Utilize the number of Ionized bubbles at the epoch of reionization as a probe of non-Gaussianity

Simple Analytic Model of Ionized Bubbles

- Dark Halo whose virial temperature >10⁴K collapses, and forms spherical halo
- Size of ionized bubble (Loeb et al. 2005)

$$R_{\text{max}} = 0.138 f_{\text{esc}}^{1/3} \left(\frac{M}{10^9 M_{\odot}}\right)^{1/3} \left(\frac{1+z}{11}\right)^{-1} \\ \times \left(\frac{\Omega_m h^2}{0.14}\right)^{-1/3} \left(\frac{N_{\gamma} f_*}{430}\right)^{1/3} \text{ Mpc}$$

- fesc : escape fraction of photons, assumed to be 0.05
 N γ : number of ionized photons per baryon in stars, 43,000 (Bromm et al . 2001)
- \blacksquare f_{*}: star formation efficiency, 0.05

Number Count of Ionized Bubbles

Bubbles are detected as holes in 21cm map
In actual observations, holes are smeared...

Surface brightness temperature contrast of an ionized bubble (hole or not hole)

$$B(\theta, z) = \frac{Y_{obs}(\theta, z)}{T_{21}(z) \int d\Omega' \exp\left[-\frac{\theta'^2}{2\sigma^2}\right]}$$

 $\sigma = \theta_{\rm FWHM} / \sqrt{8 \ln 2}$ Gaussian resolution

- T₂₁(z): 21cm background temperature
- $Yobs(\theta)$: surface brightness temperature

$$Y_{obs}(\theta, z) = \int d\Omega' \ T(\theta - \theta', z) \exp\left[-\frac{(\theta - \theta')^2}{2\sigma^2}\right]$$

Angular profile
$$T(\theta, z)$$

 $T(\theta, z) = \begin{cases} 0, & \theta < \theta_R \\ T_{21}(z), & \theta > \theta_R \end{cases}$

Criterion of bubble detection
 Parameter B_b: assume bubbles with B smaller than B_b can be detected

Number count of detectable bubbles

$$N(\langle B_b) = \int_{M_{\rm lim}(B_b)} dM \frac{dV}{dz} \frac{dn}{dM} \Delta z$$

Possible observations

 Angular resolution θ_{FWHM}=λ/D
 λ: frequency, =21(1+z)cm
 D: baseline length low resolution(LOFAR) 2km high resolution(SKA) 5km Density dispersion & Skewness
Non-Gaussianity

$$\Phi(\boldsymbol{x}) = \Phi_{\mathrm{G}}(\boldsymbol{x}) + f_{NL}(\Phi_{\mathrm{G}}^{2}(\boldsymbol{x}) - \langle \Phi_{\mathrm{G}}^{2}(\boldsymbol{x}) \rangle)$$

Power spectrum P(k)

$$\langle \Phi_{\rm G}(\boldsymbol{k}) \Phi_{\rm G}(\boldsymbol{k}') \rangle = (2\pi)^3 \delta_D(\boldsymbol{k} + \boldsymbol{k}') P(k)$$

Smoothed density dispersion

$$\sigma_M^2(M) = \langle \delta_R^2 \rangle = \int \frac{dk^3}{(2\pi)^3} W(R,k)^2 D(k,z)^2 P(k)$$

Smoothed Skewness

$$S_3(M) \equiv \frac{\langle \delta_R^3 \rangle}{\langle \delta_R^2 \rangle^2}$$
$$\langle \delta_R^3 \rangle =$$

Here

$$= \int \frac{d^3k_1}{(2\pi)^3} \frac{d^3k_2}{(2\pi)^3} \frac{d^3k_3}{(2\pi)^3} W(R,k_1) W(R,k_2) W(R,k_3) \\ \times D(k_1,z) D(k_2,z) D(k_3,z) \langle \Phi(k_1) \Phi(k_2) \Phi(k_3) \rangle$$

Mass Function

Mass Function

■ Here:

$$\frac{dn(M,z)}{dM} = -\sqrt{\frac{2}{\pi}} \frac{\bar{\rho}}{M} \exp\left[-\frac{\delta_c^2}{2\sigma_M^2}\right] \mathcal{R}_{NG}$$

$$\mathcal{R}_{NG} = \left[\frac{d \ln \sigma_M}{dM} \left(\frac{\delta_c}{\sigma_M} + \frac{S_3 \sigma_M}{6} \left(\frac{\delta_c^4}{\sigma_M^4} - 2 \frac{\delta_c^2}{\sigma_M^2} - 1 \right) \right) + \frac{1}{6} \frac{dS_3}{dM} \sigma_M \left(\frac{\delta_c^2}{\sigma_M^2} - 1 \right) \right],$$

Non-Gaussian comes through S₃ terms

f_{NL} dependence of N(<B_b)

f_{NL} dependence of N(< B_b)

 Large positive f_{NL} produces more number of bubbles from non-Gaussian tail

At higher z

less number of bubbles produced for same B_b
 smaller bubbles (large B_b)

Ratio to the Gaussian case (1) Smaller bubbles $(\text{larger } B_{\text{b}})$ More numbers (not rare objects) Less significant Non-Gaussianity

Ratio to the Gaussian case (2) Higher redshift Only rare objects can be collapsed More significant Non-Gaussianity

Time evolution of deviation from the Gaussian case

Small bubbles

Large bubbles

S/N: signal to noise ratio

Summary

of Bubbles can be a good measure of Non-Gaussianity
B_b

• Smaller $B_b \rightarrow$ larger deviation from Gaussian

■ Smaller $B_b \rightarrow$ less number of Bubbles

Optimal B_b for given S/N
 S/N=10, B_b=0.2 at z=11 (N_{NG}(f_{NL}=100)/N_G~1.7)
 S/N=3, B_b=0.1 at z=11 (N_{NG}(f_{NL}=100)/N_G~1.9)

<mark>–</mark> Z

 ■ Higher z → larger deviation from Gaussian
 ■ Higher z → Less number of bubbles
 ■ Ex) B_b=0.1, z=13 → N_{NG}(f_{NL}=100)/N_G~2.5, BUT: N_{NG}(f_{NL}=100)<1